Independent and Interactive Effects of Genetic Background and Sex on Tissue Metabolomes of Adipose, Skeletal Muscle, and Liver in Mice.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Genetics play an important role in the development of metabolic diseases. However, the relative influence of genetic variation on metabolism is not well defined, particularly in tissues, where metabolic dysfunction that leads to disease occurs. We used inbred strains of laboratory mice to evaluate the impact of genetic variation on the metabolomes of tissues that play central roles in metabolic diseases. We chose a set of four common inbred strains that have different levels of susceptibility to obesity, insulin resistance, and other common metabolic disorders. At the ages used, and under standard husbandry conditions, these lines are not overtly diseased. Using global metabolomics profiling, we evaluated water-soluble metabolites in liver, skeletal muscle, and adipose from A/J, C57BL/6J, FVB/NJ, and NOD/ShiLtJ mice fed a standard mouse chow diet. We included both males and females to assess the relative influence of strain, sex, and strain-by-sex interactions on metabolomes. The mice were also phenotyped for systems level traits related to metabolism and energy expenditure. Strain explained more variation in the metabolite profile than did sex or its interaction with strain across each of the tissues, especially in liver. Purine and pyrimidine metabolism and pathways related to amino acid metabolism were identified as pathways that discriminated strains across all three tissues. Based on the results from ANOVA, sex and sex-by-strain interaction had modest influence on metabolomes relative to strain, suggesting that the tissue metabolome remains largely stable across sexes consuming the same diet. Our data indicate that genetic variation exerts a fundamental influence on tissue metabolism.