Noise-based communication and computing Conference Paper uri icon

abstract

  • We discuss the speed-error-heat triangle and related problems with rapidly increasing energy dissipation and error rate during miniaturization. These and the independently growing need of unconditional data security have provoked non-conventional approaches in the physics of informatics. Noise-based informatics is a potentially promising possibility which is the way how biological brains process the information. Recently, it has been shown that thermal noise and its electronically enhanced versions (Johnson-like noises) can be utilized as information carrier with peculiar properties. Relevant examples are Zero power (stealth) communication, Unconditionally secure communication with Johnson(-like) noise and Kirchhoff loop and Noise-driven computing. The zero power communication utilizes the equilibrium background noise in the channel to transfer information. The unconditionally secure communication is based on the properties of Johnson(-like) noise and those of a simple Kirchhoff's loop. The scheme utilizes on the robustness of classical information and the second law of thermodynamics. It uncovers active eavesdropping within a single clock period (no error statistics is required) and it is naturally protected against the man-in-the-middle attack. Further advantages of the scheme is that the circuitry can easily be integrated on computer chips, unconditionally secure computer processors, memories and other hardware can be realized.

published proceedings

  • Proc. Workshop on Unconventional Computation and Computing

author list (cited authors)

  • Kish, L. B.

complete list of authors

  • Kish, Laszlo B

publication date

  • August 2008