Toward Developing Arrays of Active Artificial Hair Cells Conference Paper uri icon


  • The human cochlea perceives frequencies over a range of 20Hz to 20kHz, while a section of the organ of Corti in the cochlea transduces a particular frequency. The cochlear amplifier then amplifies or compresses the signal based on the stimulus level. An individual artificial hair cell (AHC) made of a piezoelectric beam with a feedback controller replicates the cochlear amplifier at a particular frequency. However, to capture a wider frequency range and mimic the tonotopic basilar membrane, an array of AHCs is required. Thus, numerical modeling of an array of active beams with different geometries is the focus of this chapter. With the dynamics of a single active artificial hair cell established, an array of AHCs with self-sensing characteristics is developed. A sample array is modeled using a few sensors to transduce a small set of frequencies in the human speech frequency range. The AHC array is simulated in Simulink and its response is controlled using a nonlinear cubic damping feedback control law that was presented in the authors previous work (Davaria, S., Malladi, V.V.S., Motaharibidgoli, S., Tarazaga, P.A.: Cochlear amplifier inspired two-channel active artificial hair cells. Mechanical Systems and Signal Processing, 129, 568589 (2019)). The response of the active system to complex stimuli with multiple frequencies is analyzed. The design, modeling, and feedback control techniques developed in the current work will be applicable to future sensor arrays and cochlear implants with more beam elements. Because each sensor will utilize the active AHC technology, the total array will offer advantages over a passive series of cantilevers or traditional sensors.

published proceedings

  • Special Topics in Structural Dynamics & Experimental Techniques, Volume 5

author list (cited authors)

  • Davaria, S., & Tarazaga, P. A.

citation count

  • 2

complete list of authors

  • Davaria, S||Tarazaga, PA

editor list (cited editors)

  • Epp, D. S.

publication date

  • September 2022