Cellular Activities of SARS-CoV-2 Main Protease Inhibitors Reveal Their Unique Characteristics Academic Article uri icon

abstract

  • ABSTRACTAs an essential enzyme of SARS-CoV-2, the pathogen of COVID-19, main protease (MPro) triggers acute toxicity to its human cell host, an effect that can be alleviated by an MPro inhibitor with cellular potency. By coupling this toxicity alleviation with the expression of an MPro-eGFP fusion protein in a human cell host for straightforward characterization with fluorescent flow cytometry, we developed an effective method that allows bulk analysis of cellular potency of MPro inhibitors. In comparison to an antiviral assay in which MPro inhibitors may target host proteases or other processes in the SARS-CoV-2 life cycle to convene strong antiviral effects, this novel assay is more advantageous in providing precise cellular MPro inhibition information for assessment and optimization of MPro inhibitors. We used this assay to analyze 30 literature reported MPro inhibitors including MPI1-9 that were newly developed aldehyde-based reversible covalent inhibitors of MPro, GC376 and 11a that are two investigational drugs undergoing clinical trials for the treatment of COVID-19 patients in United States, boceprevir, calpain inhibitor II, calpain inhibitor XII, ebselen, bepridil that is an antianginal drug with potent anti-SARS-CoV-2 activity, and chloroquine and hydroxychloroquine that were previously shown to inhibit MPro. Our results showed that most inhibitors displayed cellular potency much weaker than their potency in direct inhibition of the enzyme. Many inhibitors exhibited weak or undetectable cellular potency up to 10 M. On contrary to their strong antiviral effects, 11a, calpain inhibitor II, calpain XII, ebselen, and bepridil showed relatively weak to undetectable cellular MPro inhibition potency implicating their roles in interfering with key steps other than just the MPro catalysis in the SARS-CoV-2 life cycle to convene potent antiviral effects. characterization of these molecules on their antiviral mechanisms will likely reveal novel drug targets for COVID-19. Chloroquine and hydroxychloroquine showed close to undetectable cellular potency to inhibit MPro. Kinetic recharacterization of these two compounds rules out their possibility as MPro inhibitors. Our results also revealed that MPI5, 6, 7, and 8 have high cellular and antiviral potency with both IC50 and EC50 values respectively below 1 M. As the one with the highest cellular and antiviral potency among all tested compounds, MPI8 has a remarkable cellular MPro inhibition IC50 value of 31 nM that matches closely to its strong antiviral effect with an EC50 value of 30 nM. Given its strong cellular and antiviral potency, we cautiously suggest that MPI8 is ready for preclinical and clinical investigations for the treatment of COVID-19.

altmetric score

  • 1.5

author list (cited authors)

  • Cao, W., Cho, C., Geng, Z. Z., R., X., Allen, R., Shaabani, N., ... Liu, W. R.

citation count

  • 11

complete list of authors

  • Cao, Wenyue||Cho, Chia-Chuan Dean||Geng, Zhi Zachary||R., Xinyu||Allen, Robert||Shaabani, Namir||Vatansever, Erol C||Alugubelli, Yugendar R||Ma, Yuying||Ellenburg, William H||Yang, Kai S||Qiao, Yuchen||Ji, Henry||Xu, Shiqing||Liu, Wenshe Ray

publication date

  • January 2021