Obacunone exhibits anti-proliferative and anti-aromatase activity in vitro by inhibiting the p38 MAPK signaling pathway in MCF-7 human breast adenocarcinoma cells
Academic Article
Overview
Identity
Additional Document Info
View All
Overview
abstract
© 2014 Elsevier Masson SAS. All rights reserved. Overexpression of the aromatase enzyme CYP19 has been implicated in the onset of estrogen-dependent breast carcinogenesis. Obacunone, a natural compound present in citrus fruits, has been demonstrated for various biological activities including anti-cancer and anti-inflammatory properties. In the present study, we have isolated obacunone and obacunone glucoside (OG) from lemon seeds, then fractionated these compounds using chromatographic techniques and characterized them by HPLC, LC-MS, and 2D NMR spectral analysis. To investigate the mechanism of anti-cancer and anti-aromatase activities of limonoids, their cytotoxic effect was tested on human breast cancer (MCF-7) and non-malignant (MCF-12F) breast cells. MTT assays confirmed that obacunone was strongly inhibited MCF-7 cell proliferation without affecting non-malignant breast cells. Treatment with obacunone increased apoptosis by up-regulating expression of the pro-apoptotic protein Bax and down-regulating the anti-apoptotic protein Bcl2, as well as inducing G1 cell cycle arrest. In addition, obacunone significantly inhibited aromatase activity in an in vitro enzyme assay. Exposure of MCF-7 breast cancer cells to obacunone down-regulated expression of inflammatory molecules including nuclear factor-kappa B (NF-κB) and cyclooxygenase-2 (COX-2). Furthermore, we found that obacunone inhibited COX-2 and NF-κB by activation of the p38 mitogen-activated protein kinase (MAPK). Finally, the uptake level of obacunone into MCF-7 cells was measured by HPLC and its structure was confirmed by LC-HR-MS. This study demonstrated that obacunone may have the potential to prevent estrogen-responsive breast cancer through inhibition of the aromatase enzyme and inflammatory pathways, as well as activation of apoptosis.
published proceedings
author list (cited authors)
Kim, J., Jayaprakasha, G. K., & Patil, B. S.
citation count
complete list of authors
Kim, J||Jayaprakasha, GK||Patil, BS
publication date
published in
Identity
Digital Object Identifier (DOI)
Additional Document Info
start page
end page
volume