Knife-edge interferogram analysis for corrosive wear propagation at sharp edges. Academic Article uri icon

abstract

  • This paper presents a novel noncontact measurement and inspection method based on knife-edge diffraction theory for corrosive wear propagation monitoring at a sharp edge. The degree of corrosion on the sharp edge was quantitatively traced in process by knife-edge interferometry (KEI). The measurement system consists of a laser diode, an avalanche photodiode, and a linear stage for scanning. KEI utilizes the interferometric fringes projected on the measurement plane when the light is incident on a sharp edge. The corrosion propagation on sharp edges was characterized by analyzing the difference in the two interferometric fringes obtained from the control and measurement groups. By using the cross-correlation algorithm, the corrosion conditions on sharp edges were quantitatively quantified into two factors: lag and similarity for edge loss and edge roughness, respectively. The KEI sensor noise level was estimated at 0.03% in full scale. The computational approach to knife-edge diffraction was validated by experimental validation, and the computational error was evaluated at less than 1%. Two sets of razor blades for measurement and control groups were used. As a result, the lag will be increased at an edge loss ratio of 1.007/m due to the corrosive wear, while the similarity will be decreased at a ratio of 5.410-4/m with respect to edge roughness change. Experimental results showed a good agreement with computational results.

published proceedings

  • Appl Opt

author list (cited authors)

  • Wang, Z., & Lee, C.

citation count

  • 5

complete list of authors

  • Wang, Zhikun||Lee, ChaBum

publication date

  • February 2021