Using Test Positivity and Reported Case Rates to Estimate State-Level COVID-19 Prevalence and Seroprevalence in the United States Academic Article uri icon

abstract

  • Accurate estimates of infection prevalence and seroprevalence are essential for evaluating and informing public health responses needed to address the ongoing spread of COVID-19 in the United States. A data-driven Bayesian single parameter semi-empirical model was developed and used to evaluate state-level prevalence and seroprevalence of COVID-19 using daily reported cases and test positivity ratios. COVID-19 prevalence is well-approximated by the geometric mean of the positivity rate and the reported case rate. As of December 8, 2020, we estimate nation-wide a prevalence of 1.4% [Credible Interval (CrI): 0.8%-1.9%] and a seroprevalence of 11.1% [CrI: 10.1%-12.2%], with state-level prevalence ranging from 0.3% [CrI: 0.2%-0.4%] in Maine to 3.0% [CrI: 1.1%-5.7%] in Pennsylvania, and seroprevalence from 1.4% [CrI: 1.0%-2.0%] in Maine to 22% [CrI: 18%-27%] in New York. The use of this simple and easy-to-communicate model will improve the ability to make public health decisions that effectively respond to the ongoing pandemic. Biographical Sketch of Authors: Dr. Weihsueh A. Chiu, is a professor of environmental health sciences at Texas A&M University. He is an expert in data-driven Bayesian modeling of public health related dynamical systems. Dr. Martial L. Ndeffo-Mbah, is an Assistant Professor of Epidemiology at Texas A&M University. He is an expert in mathematical and computational modeling of infectious diseases. Summary Line: Relying on reported cases and test positivity rates individually can result in incorrect inferences as to the spread of COVID-19, and public health decision-making can be improved by instead using their geometric mean as a measure of COVID-19 prevalence and transmission.

author list (cited authors)

  • Chiu, W. A., & Ndeffo-Mbah, M. L.

publication date

  • January 1, 2020 11:11 AM