Pomegranate polyphenolics suppressed azoxymethane-induced colorectal aberrant crypt foci and inflammation: possible role of miR-126/VCAM-1 and miR-126/PI3K/AKT/mTOR.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The antitumorigenic activities of polyphenols such as ellagitannins and anthocyanins in pomegranate (Punica granatum L.) have been previously studied where cytotoxic, anti-inflammatory and antioxidant effects were evident in various cancer models. The objective of this study was to investigate the role of miR-126/vascular cell adhesion molecule 1 (VCAM-1) and miR-126/phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) in pomegranate-mediated anti-inflammatory and anticarcinogenic effects in vivo and in vitro. Sprague-Dawley rats (n = 10 per group) received pomegranate juice (2504.74 mg gallic acid equivalents/l) or a polyphenol-free control beverage ad libitum for 10 weeks and were injected with azoxymethane (AOM) subcutaneously (15mg/kg) at weeks 2 and 3. Consumption of pomegranate juice suppressed the number of aberrant crypt foci (ACF) and dysplastic ACF by 29 and 53.5% (P = 0.05 and 0.04), respectively, and significantly lowered proliferation of mucosa cells. Pomegranate juice significantly downregulated proinflammatory enzymes nitric oxide synthase and cyclooxygenase-2 messenger RNA (mRNA) and protein expression. In addition, it suppressed nuclear factor-B and VCAM-1 mRNA and protein expression in AOM-treated rats. Pomegranate also inhibited phosphorylation of PI3K/AKT and mTOR expression and increased the expression of miR-126. The specific target and functions of miR-126 were investigated in HT-29 colon cancer cell lines. In vitro, the involvement of miR-126 was confirmed using the antagomiR for miR-126, where pomegranate reversed the effects of the antagomiR on the expression of miR-126, VCAM-1 and PI3K p85. In summary, therapeutic potentials of pomegranate in colon tumorigenesis were due in part to targeting miR-126-regulated pathways, which contributes in the underlying anti-inflammatory mechanisms.