A new family of chelating diphosphines with a transition metal stereocenter in the backbone: novel applications of "chiral-at-rhenium" complexes in rhodium-catalyzed enantioselective alkene hydrogenations. Academic Article uri icon

abstract

  • The title compounds are accessed by sequences starting with racemic and enantiomerically pure [(eta5-C5H5)Re(NO)(PPh3)(CH3)]. Reactions with chlorobenzene/HBF4, PPh2H, and tBuOK give the phosphido complex [(eta5-C5H5)Re(NO)(PPh3)(PPh2)] (3). Reactions with Ph3C+ BF4-, PPh2H, and tBuOK give the methylene homologue [(eta5-C5H5)Re(NO)(PPh3)(CH2PPh2)] (9). Treatment of 3 or 9 with nBuLi or tBuLi and then PPh3Cl gives the diphosphido systems [(eta5-C5H4PPh2)Re(NO)(PPh3)((CH2)nPPh2)] (n = 0/1, 5/11). Reactions of 5 and 11 with [Rh(NBD)Cl]2/AgPF6 (NBD = norbornadiene) give the rhenium/rhodium chelate complexes [(eta5-C5H4PPh2)Re(NO)(PPh3)((mu-CH2)nPPh2)Rh(NBD)]+ PF6- (n = 0/1, 6+/12+ PF6-; 30-32% overall from commercial Re2(CO)10). The crystal structures of 6+ PF6- and 12+ PF6- are compared to those of 3 and 9, and other rhodium complexes of chelating bis(diphenylphosphines). The chiral pockets defined by the PPh2 groups show unusual features. Four alkenes of the type (Z)-RCH=C(NHCOCH3)CO2R' are treated with H2 (1 atm) and (R)-6+ PF6- or (S)-12+ PF6- (0.5 mol%) in THF at room temperature. Protected amino acids are obtained in 70-98% yields and 93-82% ee [(R)-6- PF6-] or 72-60% ee [(S)-12+ PF6-]. Pressure and temperature effects are defined, and turnover numbers of > 1600 are realized.

published proceedings

  • Chemistry

author list (cited authors)

  • Kromm, K., Zwick, B. D., Meyer, O., Hampel, F., & Gladysz, J. A.

citation count

  • 29

complete list of authors

  • Kromm, K||Zwick, BD||Meyer, O||Hampel, F||Gladysz, JA

publication date

  • May 2001

publisher