Photophysics of Platinum Tetrayne Oligomers: Delocalization of Triplet Exciton Academic Article uri icon


  • A series of platinum tetrayne oligomers, all-trans-Cl-Pt(P2)-[(C≡C)4-Pt(P2)]n-Cl, where P = tri(p-tolyl)phosphine and n = 1-3, was subjected to a detailed photophysical investigation. The photoluminescence of each oligomer at low temperature (T < 140 K) in a 2-methyltetrahydrofuran (Me-THF) glass features an intense and narrow 0-0 phosphorescence band accompanied by a vibronic progression of sub-bands separated by ca. 2100 cm(-1). The emission arises from a (3)π,π* triplet state concentrated on the (C≡C)4 carbon chain and the vibronic progression originates from coupling of the excitation to the ν(C≡C) stretch. All of the experimental data including ambient temperature absorption, low-temperature photoluminescence, and ambient temperature transient absorption spectroscopy provide clear evidence that the triplet state is localized on a chromophore consisting of approximately two -[(C≡C)4-Pt(P2)]- repeat units. Density functional theory calculations support the hypothesis that the triplet-triplet absorption arises from transitions that are delocalized over two repeat units.

author list (cited authors)

  • Li, Y., Winkel, R. W., Weisbach, N., Gladysz, J. A., & Schanze, K. S.

publication date

  • January 1, 2014 11:11 AM