A genetic selection for circadian output pathway mutations in Neurospora crassa.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
In most organisms, circadian oscillators regulate the daily rhythmic expression of clock-controlled genes (ccgs). However, little is known about the pathways between the circadian oscillator(s) and the ccgs. In Neurospora crassa, the frq, wc-1, and wc-2 genes encode components of the frq-oscillator. A functional frq-oscillator is required for rhythmic expression of the morning-specific ccg-1 and ccg-2 genes. In frq-null or wc-1 mutant strains, ccg-1 mRNA levels fluctuate near peak levels over the course of the day, whereas ccg-2 mRNA remains at trough levels. The simplest model that fits the above observations is that the frq-oscillator regulates a repressor of ccg-1 and an activator of ccg-2. We utilized a genetic selection for mutations that affect the regulation of ccg-1 and ccg-2 by the frq-oscillator. We find that there is at least one mutant strain, COP1-1 (circadian output pathway derived from ccg-1), that has altered expression of ccg-1 mRNA, but normal ccg-2 expression levels. However, the clock does not appear to simply regulate a repressor of ccg-1 and an activator of ccg-2 in two independent pathways, since in our selection we identified three mutant strains, COP1-2, COP1-3, and COP1-4, in which a single mutation in each strain affects the expression levels and rhythmicity of both ccg-1 and ccg-2.