Evolution of epimorphosis in mammals. Academic Article uri icon


  • Mammalian epimorphic regeneration is rare and digit tip regeneration in mice is the best-studied model for a multi-tissue regenerative event that involves blastema formation. Digit tip regeneration parallels human fingertip regeneration, thus understanding the details of this response can provide insight into developing strategies to expand the potential of human regeneration. Following amputation, the digit stump undergoes a strong histolytic response involving osteoclast-mediated bone degradation that is spatially and temporally linked to the expansion of blastema osteoprogenitor cells. Blastemal differentiation occurs via direct intramembranous ossification. Although robust, digit regeneration is imperfect: The amputated cortical bone is replaced with woven bone and there is excessive bone regeneration restricted to the dorsal-ventral axis. Ontogenetic and phylogenetic analysis of digit regeneration in amphibians and mammals raise the possibility that mammalian blastema is a product of convergent evolution and we hypothesize that digit tip regeneration evolved from a nonregenerative precondition. A model is proposed in which the mammalian blastema evolved in part from an adaptation of two bone repair strategies (the bone remodeling cycle and fracture healing) both of which are conserved across tetrapod vertebrates. The view that epimorphic regeneration evolved in mammals from a nonregenerative precondition is supported by recent studies demonstrating that complex regenerative responses can be induced from a number of different nonregenerative amputation wounds by specific modification of the healing response.

published proceedings

  • J Exp Zool B Mol Dev Evol

altmetric score

  • 2

author list (cited authors)

  • Muneoka, K., & Dawson, L. A.

citation count

  • 8

complete list of authors

  • Muneoka, Ken||Dawson, Lindsay A

publication date

  • March 2021