Output Feedback Finite-Time Stabilization of Systems Subject to Hlder Disturbances via Continuous Fractional Sliding Modes uri icon

abstract

  • The problem of designing a continuous control to guarantee finitetime tracking based on output feedback for a system subject to a Hlder disturbance has remained elusive. The main difficulty stems from the fact that such disturbance stands for a function that is continuous but not necessarily differentiable in any integerorder sense, yet it is fractionalorder differentiable. This problem imposes a formidable challenge of practical interest in engineering because (i) it is common that only partial access to the state is available and, then, output feedback is needed; (ii) such disturbances are present in more realistic applications, suggesting a fractionalorder controller; and (iii) continuous robust control is a must in several control applications. Consequently, these stringent requirements demand a sound mathematical framework for designing a solution to this control problem. To estimate the full state in finitetime, a highorder sliding modebased differentiator is considered. Then, a continuous fractional differintegral sliding mode is proposed to reject Hlder disturbances, as well as for uncertainties and unmodeled dynamics. Finally, a homogeneous closedloop system is enforced by means of a continuous nominal control, assuring finitetime convergence. Numerical simulations are presented to show the reliability of the proposed method.

published proceedings

  • MATHEMATICAL PROBLEMS IN ENGINEERING

author list (cited authors)

  • Munoz-Vazquez, A., Parra-Vega, V., Sanchez-Orta, A., & Romero-Galvan, G.

complete list of authors

  • Munoz-Vazquez, Aldo-Jonathan||Parra-Vega, Vicente||Sanchez-Orta, Anand||Romero-Galvan, Gerardo

editor list (cited editors)

  • Dumitrescu, B.