Dynamically Pulsed MTCMOS with Bus Encoding for Total Power and Crosstalk Minimization
Conference Paper
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Increased buffer insertion along on-chip global lines and the increasing contribution of leakage power have resulted in buffer leakage emerging as one of the chief contributors to system leakage power. We present a novel power-gating scheme for repeaters on global bus lines that address the pressing problem of runtime leakage while simultaneously eliminating worst-case capacitive coupling between adjacent bus lines. We propose using a pulsed MTCMOS (multiple threshold CMOS) scheme that dynamically activates the bus system only when transmitting a signal. Additionally, a bus encoding scheme is used to eliminate worst-case coupling and thereby negate the power-gating and pulse generation performance penalty. We consider all sources of delay and leakage power, including that of the MTCMOS control circuitry. This technique can result in nearly a 30% reduction in total bus system power for low switching activities and up to 2.3 times reduction in standby mode leakage with no reactivation delay penalty. 2005 IEEE.
name of conference
Sixth International Symposium on Quality of Electronic Design (ISQED'05)