Monitoring Lung Mechanics during Mechanical Ventilation using Machine Learning Algorithms.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Evaluation of lung mechanics is the primary component for designing lung protective optimal ventilation strategies. This paper presents a machine learning approach for bedside assessment of respiratory resistance (R) and compliance (C). We develop machine learning algorithms to track flow rate and airway pressure and estimate R and C continuously and in real-time. An experimental study is conducted, by connecting a pressure control ventilator to a test lung that simulates various R and C values, to gather sensor data for validation of the devised algorithms. We develop supervised learning algorithms based on decision tree, decision table, and Support Vector Machine (SVM) techniques to predict R and C values. Our experimental results demonstrate that the proposed algorithms achieve 90.3%, 93.1%, and 63.9% accuracy in assessing respiratory R and C using decision table, decision tree, and SVM, respectively. These results along with our ability to estimate R and C with 99.4% accuracy using a linear regression model demonstrate the potential of the proposed approach for constructing a new generation of ventilation technologies that leverage novel computational models to control their underlying parameters for personalized healthcare and context-aware interventions.