Spar-type Wind Turbine Behavior: Modeling and Comparison with Experimental Data Conference Paper uri icon

abstract

  • Copyright 2018 by the International Society of Offshore and Polar Engineers (ISOPE) The development of offshore wind farms for deep water has inspired the design of various deepwater floaters that could survive harsher environments. Among the proposed designs, spar-type wind turbine designs appear to be a very promising concept. During the preliminary design stage, numerical tools that can be used to quickly estimate the hydrodynamic and aerodynamic response of the floating system with a good accuracy has been the subject of much research. In 2014, a model test was conducted in the State Key Lab of Ocean Engineering (SKLOE) at Shanghai Jiao Tong University. A 1:50 scale model of the NREL (National Renewable Energy Lab) 5MW baseline wind turbine atop the OC3-Hywind spar-buoy was tested for a design water depth of 200 m. The present research study explores the accuracy of numerical predictions based upon the use of the industry-standard software packages OrcaFlex and second order WAMIT codes in comparison with the measurements from a recent experimental study. This approach allows the consideration of nonlinear wave and wind loadings on the moored Spar wind turbine platform system. A comparison between numerical calculation by presented tool and the experimental data provided by SKLOE shows a good agreement.

published proceedings

  • Proceedings of the International Offshore and Polar Engineering Conference

author list (cited authors)

  • Yang, H., Niedzwecki, J. M., & Hu, Z.

publication date

  • January 1, 2018 11:11 AM