Inflammation-induced lymphatic architecture and bone turnover changes are ameliorated by irisin treatment in chronic inflammatory bowel disease.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Inflammatory bowel disease (IBD) is a chronic disease with gastrointestinal dysfunction as well as comorbidities such as inflammation-induced bone loss and impaired immune response. Current treatments for IBD all have negative, potentially severe side effects. We aimed to test whether exogenous treatment with irisin, a novel immunomodulatory adipomyokine, could ameliorate IBD-induced lymphatic and bone alterations. Irisin treatment improved both gut and bone outcomes by mitigating inflammation and restoring structure. In the gut, IBD caused colonic lymphatic hyperproliferation into the mucosal and submucosal compartments. This proliferation in the rodent model is akin to what is observed in IBD patient case studies. In bone, IBD increased osteoclast surface and decreased bone formation. Both gut and osteocytes in bone exhibited elevated levels of TNF- and receptor activator of NF-B ligand (RANKL) protein expression. Exogenous irisin treatment restored normal colonic lymphatic architecture and increased bone formation rate concurrent with decreased osteoclast surfaces. After irisin treatment, gut and osteocyte TNF- and RANKL protein expression levels were no different from vehicle controls. Our data indicate that the systemic immunologic changes that occur in IBD are initiated by damage in the gut and likely linked through the lymphatic system. Additionally, irisin is a potential novel intervention mitigating both local inflammatory changes in the gut and distant changes in bone.-Narayanan, S. A., Metzger, C. E., Bloomfield, S. A., Zawieja, D. C. Inflammation-induced lymphatic architecture and bone turnover changes are ameliorated by irisin treatment in chronic inflammatory bowel disease.