Quantum optics approach to radiation from atoms falling into a black hole. Academic Article uri icon


  • We show that atoms falling into a black hole (BH) emit acceleration radiation which, under appropriate initial conditions, looks to a distant observer much like (but is different from) Hawking BH radiation. In particular, we find the entropy of the acceleration radiation via a simple laser-like analysis. We call this entropy horizon brightened acceleration radiation (HBAR) entropy to distinguish it from the BH entropy of Bekenstein and Hawking. This analysis also provides insight into the Einstein principle of equivalence between acceleration and gravity.

published proceedings

  • Proc Natl Acad Sci U S A

altmetric score

  • 10.58

author list (cited authors)

  • Scully, M. O., Fulling, S., Lee, D. M., Page, D. N., Schleich, W. P., & Svidzinsky, A. A.

citation count

  • 42

complete list of authors

  • Scully, Marlan O||Fulling, Stephen||Lee, David M||Page, Don N||Schleich, Wolfgang P||Svidzinsky, Anatoly A

publication date

  • August 2018