Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We demonstrate the existence of the phenomenon of the inverse electromagnetically induced transparency (IEIT) in an opto mechanical system consisting of a nanomechanical mirror placed in an optical cavity. We show that two weak counter-propagating identical classical probe fields can be completely absorbed by the system in the presence of a strong coupling field so that the output probe fields are zero. The light is completely confined inside the cavity and the energy of the incoming probe fields is shared between the cavity field and creation of a coherent phonon and resides primarily in one of the polariton modes. The energy can be extracted by a perturbation of the external fields or by suddenly changing the Q of the cavity. 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.