The N-Terminal Transmembrane Domain of λ S Is Required for Holin but Not Antiholin Function▿ Academic Article uri icon

abstract

  • The lambda S gene encodes a holin, S105, and an antiholin, S107, which differs by its Met-Lys N-terminal extension. The model for the lysis-defective character of S107 stipulates that the additional N-terminal basic residue keeps S107 from assuming the topology of S105, which is N-out, C-in, with three transmembrane domains (TMDs). Here we show that the N terminus of S105 retains its fMet residue but that the N terminus of S107 is fully deformylated. This supports the model that in S105, TMD1 inserts into the membrane very rapidly but that in S107, it is retained in the cytoplasm. Further, it reveals that, compared to S105, S107 has two extra positively charged moieties, Lys2 and the free N-terminal amino group, to hinder its penetration into an energized membrane. Moreover, an allele, S105(DeltaTMD1), with TMD1 deleted, was found to be defective in lysis, insensitive to membrane depolarization, and dominant to the wild-type allele, indicating that the lysis-defective, antiholin character of S107 is due to the absence of TMD1 from the bilayer rather than to its ectopic localization at the inner face of the cytoplasmic membrane. Finally, the antiholin function of the deletion protein was compromised by the substitution of early-lysis missense mutations in either the deletion protein or parental S105 but restored when both S105(DeltaTMD1) and holin carried the substitution.

altmetric score

  • 3

author list (cited authors)

  • White, R., Tran, T., Dankenbring, C. A., Deaton, J., & Young, R. y.

citation count

  • 23

publication date

  • November 2009