Analysis of the hot gas flow in the outlet plenum of the very high temperature reactor using coupled RELAP5-3D system code and a CFD code Academic Article uri icon

abstract

  • The very high temperature reactor (VHTR) system behavior should be predicted during normal operating conditions and postulated accident conditions. The plant accident scenario and the passive safety behavior should be accurately predicted. Uncertainties in passive safety behavior could have large effects on the resulting system characteristics. Due to these performance issues in the VHTR, there is a need for development, testing and validation of design tools to demonstrate the feasibility of the design concepts and guide the improvement of the plant components. One of the identified design issues for the gas-cooled reactor is the thermal mixing of the coolant exiting the core into the outlet plenum. Incomplete thermal mixing may give rise to thermal stresses in the downstream components. To provide flow details, the analysis presented in this paper was performed by coupling a VHTR model generated in a thermal hydraulic systems code to a computational fluid dynamics (CFD) outlet plenum model. The outlet conditions obtained from the systems code VHTR model provide the inlet boundary conditions to the CFD outlet plenum model. By coupling the two codes in this manner, the important three-dimensional flow effects in the outlet plenum are well modeled while avoiding modeling the entire reactor with a computationally expensive CFD code. The values of pressure, mass flow rate and temperature across the coupled boundary showed differences of less than 5% in every location except for one channel. The coupling auxiliary program used in this analysis can be applied to many different cases requiring detailed three-dimensional modeling in a small portion of the domain.

published proceedings

  • NUCLEAR ENGINEERING AND DESIGN

author list (cited authors)

  • Anderson, N., Hassan, Y., & Schultz, R.

citation count

  • 31

complete list of authors

  • Anderson, Nolan||Hassan, Yassin||Schultz, Richard

publication date

  • January 2008