Large Eddy Simulations of Jet Flow Interaction Within Staggered Rod Bundles Conference Paper uri icon


  • The present work investigates the turbulent jet flow mixing of downward impinging jets within a staggered rod bundle based on previous experimental work. Two inlet jets had Reynolds numbers of 11,160 and 6,250 and were chosen to coincide with available data [Amini and Hassan 2009]. Steady state simulations were initially carried out on a semi-structured polyhedral mesh of roughly 13.2 million cells following a sensitivity study over six different discretized meshes. Very large eddy simulations were carried out over the most refined mesh and continuous 1D wavelet transforms were used to analyze the dominant instabilities and how they propagate through the system in an effort to provide some insight into potential problems relating to structural vibrations due to turbulent instabilities. The presence of strong standing horseshoe vorticies near the base of each cylinder adjacent to an inlet jet was noted and is of potential importance in the abrasion wear of the graphite support columns of the VHTR if sufficient wear particles are present in the gas flow.

name of conference

  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels

published proceedings

  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia Parts A, B, and C

author list (cited authors)

  • Salpeter, N., & Hassan, Y.

citation count

  • 0

complete list of authors

  • Salpeter, Nathaniel||Hassan, Yassin

publication date

  • January 2010