To Switch or Not to Switch: Recruitment of Degrees of Freedom Stabilizes Biological Coordination. Academic Article uri icon

abstract

  • Recruitment and suppression processes were studied in the swinging-pendulum paradigm (cf. P. N. Kugler & M. T. Turvey, 1987). The authors pursued the hypothesis that active recruitment of previously unmeasured degrees of freedom serves to stabilize an antiphase bimanual coordination pattern and thereby obviates the need for pattern switching from an antiphase to an in-phase coordination pattern, a key prediction of the H. Haken, J. A. S. Kelso, and H. Bunz (1985) model. In Experiment 1, 7 subjects swung single hand-held pendulums in time with an auditory metronome whose frequency increased. Pendulum motion changed from planar (2D) to elliptical (3D), and forearm motion (produced by elbow flexion-extension) was recruited with increasing movement rate for cycling frequencies typically above the pendulum's eigenfrequency. In Experiment 2, 7 subjects swung paired pendulums in either an in-phase or an antiphase coordinative mode as movement rate was increased. With the systematic increase in movement rate, the authors attempted to induce transitions from the antiphase to the in-phase coordinative pattern, with loss of stability the key mechanism of pattern change. Transitions from the antiphase to the in-phase coordinative mode were not observed. Pattern stability, as defined by the variability of the phase relation between the pendulums, was affected only a little by increasing movement rate. As in the single-pendulum case, pendulum motion changed from planar to elliptical, and forearm motion was recruited with increasing cycling frequency. Those results reveal a richer dynamics than previously observed in the pendulum paradigm and support the hypothesis that recruitment processes stabilize coordination in biomechanically redundant systems, thereby reducing the need for pattern switching.

published proceedings

  • J Mot Behav

author list (cited authors)

  • Buchanan, J. J., & Kelso, J.

citation count

  • 34

complete list of authors

  • Buchanan, JJ||Kelso, JAS

publication date

  • January 1999