Practical Airgap Prediction for Offshore Structures Academic Article uri icon

abstract

  • Two new methods are proposed to predict airgap demand. Airgap demand is the maximum expected increase in the water surface elevation caused incident waves interacting with an offshore structure. The first new method enables inclusion of some second-order effects, though it is based on only first-order diffraction results. The method is simple enough to be practical for use as a hand-calculation in the early stages of design. Two existing methods of predicting airgap demand based on first-order diffraction are also briefly presented and results from the three methods are compared with model test results. All three methods yield results superior to those based on conventional post-processing of first-order diffraction results, and comparable to optimal post-processing of second-order diffraction results. A second new method is also presented; it combines extreme value theory with statistical regression to predict extreme airgap events using model test data. Estimates of extreme airgap events based on this method are found to be more reliable than estimates based on extreme observations from a single model test. This second new method is suitable for use in the final stages of design. © 2004 by ASME.

author list (cited authors)

  • Sweetman, B.

citation count

  • 12

publication date

  • May 2004