A mutation that produces an absolute deficiency of normal beta-major globin polypeptides has been recovered from a DBA/2J male mouse. Most mice homozygous for the deficiency survived to adulthood and reproduced but were smaller at birth than their littermates and demonstrated a hypochromic, microcytic anemia with severe anisocytosis, poikilocytosis, and reticulocytosis and the presence of inclusion bodies in a high proportion of circulating erythrocytes. Mice heterozygous for the deficiency demonstrated a mild reticulocytosis but were not clinically anemic. Analysis of globin chain synthesis in vitro by 3H-leucine incorporation revealed that beta-globin synthesis was nearly normal (95%) in heterozygotes and about 75% of normal in deficiency homozygotes. Molecular characterization of the mutation by restriction analysis revealed a deletion of about 3.3 kb of DNA, including regulatory sequences and all coding blocks for beta-major globin. Based on genetic and hematological criteria, mice homozygous for the mutant allele, designated Hbbth-1, represent the first animal model of beta-thalassemia (Cooley's anemia), a severe genetic disease of humans.