selected publications academic article Demlow, A. (2017). Convergence and quasi-optimality of adaptive finite element methods for harmonic forms. Numerische Mathematik. 136(4), 941-971. Cockburn, B., & Demlow, A. (2016). Hybridizable discontinuous Galerkin and mixed finite element methods for elliptic problems on surfaces. Mathematics of Computation. 85(302), 2609-2638. Demlow, A. (2016). Quasi-optimality of adaptive finite element methods for controlling local energy errors. Numerische Mathematik. 134(1), 27-60. Demlow, A., & Kopteva, N. (2016). Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems. Numerische Mathematik. 133(4), 707-742. Bonito, A., & Demlow, A. (2016). CONVERGENCE AND OPTIMALITY OF HIGHER-ORDER ADAPTIVE FINITE ELEMENT METHODS FOR EIGENVALUE CLUSTERS. SIAM Journal on Numerical Analysis. 54(4), 2379-2388. Camacho, F., & Demlow, A. (2015). L 2 and pointwise a posteriori error estimates for FEM for elliptic PDEs on surfaces. IMA Journal of Numerical Analysis. 35(3), 1199-1227. Demlow, A., & Hirani, A. N. (2014). A Posteriori Error Estimates for Finite Element Exterior Calculus: The de Rham Complex. Foundations of Computational Mathematics. 14(6), 1337-1371. Demlow, A., & Larsson, S. (2012). Local pointwise a posteriori gradient error bounds for the Stokes equations. Mathematics of Computation. 82(282), 625-649. Demlow, A., & Olshanskii, M. A. (2012). An Adaptive Surface Finite Element Method Based on Volume Meshes. SIAM Journal on Numerical Analysis. 50(3), 1624-1647. Demlow, A., & Georgoulis, E. H. (2012). Pointwise a Posteriori Error Control for Discontinuous Galerkin Methods for Elliptic Problems. SIAM Journal on Numerical Analysis. 50(5), 2159-2181. Demlow, A., Leykekhman, D., Schatz, A. H., & Wahlbin, L. B. (2011). Best approximation property in the W 1 W^1_{infty } norm for finite element methods on graded meshes. Mathematics of Computation. 81(278), 743-764. Demlow, A., & Stevenson, R. (2011). Convergence and quasi-optimality of an adaptive finite element method for controlling L2 errors. Numerische Mathematik. 117(2), 185-218. Demlow, A., Guzmn, J., & Schatz, A. H. (2010). Local energy estimates for the finite element method on sharply varying grids. Mathematics of Computation. 80(273), 1-9. Demlow, A., & Makridakis, C. (2010). Sharply local pointwise a posteriori error estimates for parabolic problems. Mathematics of Computation. 79(271), 1233-1262. Demlow, A. (2010). Convergence of an Adaptive Finite Element Method for Controlling Local Energy Errors. SIAM Journal on Numerical Analysis. 48(2), 470-497. Demlow, A., Lakkis, O., & Makridakis, C. (2009). A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems. SIAM Journal on Numerical Analysis. 47(3), 2157-2176. Demlow, A. (2009). Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces. SIAM Journal on Numerical Analysis. 47(2), 805-827. Demlow, A. (2007). Sharply localized pointwise and W 1 W_infty ^{-1} estimates for finite element methods for quasilinear problems. Mathematics of Computation. 76(260), 1725-1741. Demlow, A., & Dziuk, G. (2007). An Adaptive Finite Element Method for the LaplaceBeltrami Operator on Implicitly Defined Surfaces. SIAM Journal on Numerical Analysis. 45(1), 421-442. Demlow, A. (2007). Local a posteriori estimates for pointwise gradient errors in finite element methods for elliptic problems. Mathematics of Computation. 76(257), 19-42. Demlow, A. (2006). Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems. SIAM Journal on Numerical Analysis. 44(2), 494-514. Demlow, A. (2004). Localized pointwise error estimates for mixed finite element methods. Mathematics of Computation. 73(248), 1623-1653. Demlow, A. (2003). Piecewise linear finite element methods are not localized. Mathematics of Computation. 73(247), 1195-1201. Demlow, A. (2002). Suboptimal and Optimal Convergence in Mixed Finite Element Methods. SIAM Journal on Numerical Analysis. 39(6), 1938-1953. Demlow, A. R., Eldred, D. V., Johnson, D. A., & Westrum, E. F. (1998). Advantages to conversion of lattice heat capacity to C-V in the resolution of excess properties - The Ln(2)S(3)'s as an example. 52(3), 1055-1062.
principal investigator on Finite Element Methods for the Surface Stokes Equation awarded by National Science Foundation - (Arlington, Virginia, United States) 2020 - 2023 Topics in Mathematical Theory of Adaptive Finite Element Methods awarded by National Science Foundation - (Arlington, Virginia, United States) 2017 - 2020 Problems in mathematical foundations of adaptive finite element methods awarded by National Science Foundation - (Arlington, Virginia, United States) 2014 - 2017
teaching activities MATH172 Calculus Ii Instructor MATH308 Differential Equations Instructor MATH412 Theory Of Pdes Instructor MATH417 Numerical Methods Instructor MATH442 Math Modeling Instructor MATH610 Num Meth In Diff Equa Instructor MATH685 Directed Studies Instructor MATH691 Research Instructor
education and training Ph.D. in Mathematics, Cornell University - (Ithaca, New York, United States) 2002 B.A. in Mathematics and Chemistry, Spring Arbor University - (Spring Arbor, Michigan, United States) 1996
awards and honors Fellows in Mathematics, conferred by Simons Foundation - (New York, New York, United States), 2012