Dentin sialophosphoprotein in biomineralization. Academic Article uri icon


  • Two of the proteins found in significant quantity in the extracellular matrix (ECM) of dentin are dentin phosphoprotein (DPP) and dentin sialoprotein (DSP). DPP, the most abundant of the noncollagenous proteins (NCPs) in dentin is an unusually polyanionic protein, containing a large number of aspartic acids (Asp) and phosphoserines (Pse) in the repeating sequences of (Asp-Pse)(n). and (Asp-Pse-Pse)(n). The many negatively charged regions of DPP are thought to promote mineralization by binding calcium and presenting it to collagen fibers at the mineralization front during the formation of dentin. This purported role of DPP is supported by a sizeable pool of in vitro mineralization data showing that DPP is an important initiator and modulator for the formation and growth of hydroxyapatite (HA) crystals. Quite differently, DSP is a glycoprotein, with little or no phosphate. DPP and DSP are the cleavage products of dentin sialophosphoprotein (DSPP). Human and mouse genetic studies have demonstrated that mutations in, or knockout of, the Dspp gene result in mineralization defects in dentin and/or bone. The discoveries in the past 40 years with regard to DPP, DSP, and DSPP have greatly enhanced our understanding of biomineralization and set a new stage for future studies. In this review, we summarize the important and new developments made in the past four decades regarding the structure and regulation of the Dspp gene, the biochemical characteristics of DSPP, DPP, and DSP as well as the cell/tissue localizations and functions of these molecules.

published proceedings

  • Connect Tissue Res

author list (cited authors)

  • Prasad, M., Butler, W. T., & Qin, C.

citation count

  • 136

complete list of authors

  • Prasad, Monica||Butler, William T||Qin, Chunlin

publication date

  • January 2010