Hypercholesterolemia abolishes voltage-dependent K+ channel contribution to adenosine-mediated relaxation in porcine coronary arterioles. Academic Article uri icon

abstract

  • Hypercholesterolemic patients display reduced coronary flow reserve in response to adenosine infusion. We previously reported that voltage-dependent K+ (Kv) channels contribute to adenosine-mediated relaxation of coronary arterioles isolated from male miniature swine. For this study, we hypothesized that hypercholesterolemia attenuates Kv channel contribution to adenosine-induced vasodilatation. Pigs were randomly assigned to a control or high fat/high cholesterol diet for 20-24 wk, and then killed. After completion of the experimental treatment, arterioles (approximately 150 microm luminal diameter) were isolated from the left-ventricular free wall near the apical region of the heart, cannulated, and pressurized at 40 mmHg. Adenosine-mediated relaxation was significantly attenuated in both endothelium-intact and -denuded arterioles from hypercholesterolemic compared with control animals. The classic Kv channel blocker, 4-aminopyridine (1 mM), significantly attenuated adenosine-mediated relaxation in arterioles isolated from control but not hypercholesterolemic animals. Furthermore, the nonselective K+ channel blocker, tetraethylammonium (TEA; 1 mM) significantly attenuated adenosine-mediated relaxation in arterioles from control but not hypercholesterolemic animals. In additional experiments, coronary arteriolar smooth muscle cells were isolated, and whole cell Kv currents were measured. Kv currents were significantly reduced (approximately 15%) in smooth muscle cells from hypercholesterolemic compared with control animals. Furthermore, Kv current sensitive to low concentrations of TEA was reduced (approximately 45%) in smooth muscle cells from hypercholesterolemic compared with control animals. Our data indicate that hypercholesterolemia abolishes Kv channel contribution to adenosine-mediated relaxation in coronary arterioles, which may be attributable to a reduced contribution of TEA-sensitive Kv channels in smooth muscle of hypercholesterolemic animals.

published proceedings

  • Am J Physiol Heart Circ Physiol

author list (cited authors)

  • Heaps, C. L., Tharp, D. L., & Bowles, D. K.

citation count

  • 63

complete list of authors

  • Heaps, CL||Tharp, DL||Bowles, DK

publication date

  • February 2005