Three-dimensional surface displacements and rotations from differencing pre- and post-earthquake LiDAR point clouds Academic Article uri icon

abstract

  • The recent explosion in sub-meter resolution airborne LiDAR data raises the possibility of mapping detailed changes to Earth's topography. We present a new method that determines three-dimensional (3-D) coseismic surface displacements and rotations from differencing pre-and post-earthquake airborne LiDAR point clouds using the Iterative Closest Point (ICP) algorithm. Tested on simulated earthquake displacements added to real LiDAR data along the San Andreas Fault, the method reproduces the input deformation for a grid size of 50 m with horizontal and vertical accuracies of 20 cm and 4 cm, values that mimic errors in the original spot height measurements. The technique also measures rotations directly, resolving the detailed kinematics of distributed zones of faulting where block rotations are common. By capturing near-fault deformation in 3-D, the method offers new constraints on shallow fault slip and rupture zone deformation, in turn aiding research into fault zone rheology and long-term earthquake repeatability. 2012. American Geophysical Union. All Rights Reserved.

published proceedings

  • Geophysical Research Letters

altmetric score

  • 1.85

author list (cited authors)

  • Nissen, E., Krishnan, A. K., Arrowsmith, J. R., & Saripalli, S.

citation count

  • 65

complete list of authors

  • Nissen, Edwin||Krishnan, Aravindhan K||Arrowsmith, J Ramón||Saripalli, Srikanth

publication date

  • August 2012