Molecular characterization of phospholipid hydroperoxide glutathione peroxidases from Hydra vulgaris.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Apparent full-length cDNA sequences coding respectively for mitochondrial (HvGPx41) and nuclear (HvGPx42) phospholipid hydroperoxide glutathione peroxidase were isolated from Hydra vulgaris. The cDNA sequences share total identity in their 3'-end and differ in their 5'-end. The protein-coding regions of the HvGPx41 and HvGPx42 cDNA encode polypeptides of 190 and 168 amino acids, including a TGA-encoded selenocysteine, respectively. Phylogenetic analysis showed that the HvGPx41 and HvGPx42 are clustered together along with other phospholipid hydroperoxide glutathione peroxidases (PHGPx) from several organisms. A tertiary structure model generated for the H. vulgaris PHGPx displayed the thioredoxin fold. Hydrae exposed to starvation, metal and oxidative stress responded by regulating their PHGPx mRNA transcription. These results indicated that the PHGPx gene is affected by the cellular stress response and (anti)oxidative processes triggered by stressor and contaminant exposure. Hence the expression of PHGPx mRNA in hydra may have potential use as molecular biomarkers for assessing stress, toxicity and pro-oxidant quality of chemicals and aquatic environmental quality.