uri icon
  • Contact Info
  • 1 979 845 5032
  • Websites

Zeng, Lanying Professor

Positions

Living systems make decisions by integrating information from their environments in order to optimize their own fitness. This decision-making process has many intricacies, with a dual nature characterized by stochasticity and determinism, and considerable effort has been dedicated to characterizing the factors contributing to cell-fate heterogeneity. Our primary goal is to determine how multiple environmental and genetic factors, some deterministic and some stochastic, impact developmental outcomes. We choose to study paradigms of cellular decision-making such as bacteriophage lambda lytic-lysogenic development to simplify the complicated nature of cell-fate selection. By distilling the study of a ubiquitous and vital process into basic questions, we hope to generate new insights into how decision-making affects cellular development and differentiation in higher organisms.



We utilize high-resolution live-cell fluorescence microscopy, single-molecule fluorescence microscopy, quantitative data analysis, and simple mathematical modeling to mechanistically dissect the decision-making processes at single-cell/molecule levels. Our favorite biological models are the lysis-lysogeny systems of bacteria and their viruses, like E. coli being infected by paradigm phages lambda and P1. By revisiting established systems with a new, technologically advanced perspective, we are able to reveal previously hidden complexities to better understand the nature of living cells.

HR job title

  • Professor