Sarcoplasmic reticulum Ca(2+) uptake is impaired in coronary smooth muscle distal to coronary occlusion.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
After chronic occlusion, collateral-dependent coronary arteries exhibit alterations in both vasomotor reactivity and associated myoplasmic free Ca(2+) levels that are prevented by chronic exercise training. We tested the hypotheses that coronary occlusion diminishes Ca(2+) uptake by the sarcoplasmic reticulum (SR) and that exercise training would prevent impaired SR Ca(2+) uptake. Ameroid constrictors were surgically placed around the proximal left circumflex (LCx) artery of female swine 8 wk before initiating 16-wk sedentary (pen confined) or exercise-training (treadmill run) protocols. Twenty-four weeks after Ameroid placement, smooth muscles cells were enzymatically dissociated from both the LCx and nonoccluded left anterior descending (LAD) arteries of sedentary and exercise-trained pigs, and myoplasmic free Ca(2+) was studied using fura 2 microfluorometry. After the SR Ca(2+) store was partially depleted with caffeine (5 mM), KCl-induced membrane depolarization produced a significant decrease in the time to half-maximal (t(1/2)) myoplasmic free Ca(2+) accumulation in LCx versus LAD cells of sedentary pigs. Furthermore, inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA; 10 microM cyclopiazonic acid) significantly reduced t(1/2) in cells isolated from the LAD but not from the LCx. Exercise training did not prevent the differences in t(1/2) myoplasmic free Ca(2+) accumulation observed between LCx and LAD cells. Occlusion or exercise training did not alter SERCA protein levels. These results support our hypothesis of impaired SR Ca(2+) uptake in coronary smooth muscle cells isolated distal to chronic occlusion. Impaired SR Ca(2+) uptake was independent of SERCA protein levels and was not prevented by exercise training.