Thermo-mechanical behavior of energy piles in high plasticity clays Academic Article uri icon

abstract

  • Energy piles make use of constant and moderate ground temperature for efficient thermal control of buildings. However, this use introduces new engineering challenges because the changes of temperature in the foundation pile and ground induce additional deformations and forces in the foundation element and coupled thermo-hydro-mechanical phenomena in the soil. Several published full-scale tests investigated this aspect of energy piles and showed thermally induced deformation and forces in the foundation element. In parallel, significant progress has been made in the understanding of thermal properties of soils and on the effect of cyclic thermal load on ground and foundation behavior. However, the effect of temperature on the creep rate of energy piles has received practically no attention in the past. This paper reports the experimental results of an in situ tension thermo-mechanical test on an energy pile performed in a very stiff high plasticity clay. During the in situ test, the pile was subjected to thermal loading by circulating hot water in fitted pipes, simulating a thermal load in a cooling-dominated climate, at different levels of mechanical loading. The axial strain and temperature in the pile, and the load-displacement of the pile were monitored during the tension test at different locations along the center of the pile and at the pile head, respectively. The data showed that as the temperature increases, the observed creep rate of the energy pile in this high plasticity clay also increases, which will lead to additional time-dependent displacement of the foundation over the life time of the structure. It was also found that the use of geothermal piles causes practically insignificant thermally induced deformation and loads in the pile itself. 2014 Springer-Verlag Berlin Heidelberg.

published proceedings

  • ACTA GEOTECHNICA

author list (cited authors)

  • Akrouch, G. A., Sanchez, M., & Briaud, J.

citation count

  • 106

complete list of authors

  • Akrouch, Ghassan Anis||Sanchez, Marcelo||Briaud, Jean-Louis

publication date

  • June 2014