Efficacy of Traditional Almond Decontamination Treatments and Electron Beam Irradiation against Heat-Resistant Salmonella Strains Academic Article uri icon

abstract

  • Two outbreaks of salmonellosis were linked to the consumption of raw almonds from California in 2001 and 2004. As a result, federal regulations were developed, which mandate that all almonds grown in California must be treated with a process that results in a 4-log reduction of Salmonella. Because most of the technologies approved to treat almonds rely on the application of heat to control Salmonella, an evaluation of alternative technologies for inactivating heat-resistant Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W was needed. In this study, almonds were inoculated with Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W and then treated with an electron beam (e-beam) or by blanching or oil roasting. The irradiation D10-values for Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W treated with e-beam were 0.90 and 0.72 kGy, respectively. For heat treatments, thermal D10-values for Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W strains were 15.6 and 12.4 s, respectively, when subjected to blanching at 88°C and 13.2 and 10.9 s, respectively, when roasted in oil at 127 ± 2°C. No significant differences in irradiation and thermal treatment results were observed between Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W (P > 0.05), indicating that e-beam irradiation may be a feasible technology for reducing Salmonella in almonds. However, the sensory changes resulting from irradiating at the doses used in this study must be evaluated before e-beam irradiation can be used as a nonthermal alternative for decontamination of almonds.

author list (cited authors)

  • Cuervo, M. P., Lucia, L. M., & Castillo, A.

citation count

  • 6

publication date

  • March 2016