Statistical methodology for assessing manufacturing quality related to transverse cracking in cross ply laminates
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We present a statistical analysis based methodology for making assessment of the manufacturing quality of cross ply composite laminates as it relates to its effect on transverse cracking evolution. Assuming a two-parameter Weibull distribution of tensile strength of the transverse plies to represent randomly distributed manufacturing defects, multiple crack formation in the plies is simulated in the non-interactive and interactive regimes of cracking using the local stress fields calculated by a variational analysis. The statistical methodology is demonstrated on crack density evolution in cross ply laminates manufactured by four different processing routes and loaded in monotonic tension in the axial direction. The differences in the crack density evolution, supposedly due to different defect population induced by the four manufacturing conditions, could be described by the proposed statistical simulation method. 2014.