Ultrafast and Highly Reversible Sodium Storage in Zinc-Antimony Intermetallic Nanomaterials Academic Article uri icon

abstract

  • The progress on sodiumion battery technology faces many grand challenges, one of which is the considerably lower rate of sodium insertion/deinsertion in electrode materials due to the larger size of sodium (Na) ions and complicated redox reactions compared to the lithiumion systems. Here, it is demonstrated that sodium ions can be reversibly stored in ZnSb intermetallic nanowires at speeds that can exceed 295 nm s1. Remarkably, these values are one to three orders of magnitude higher than the sodiation rate of other nanowires electrochemically tested with in situ transmission electron microscopy. It is found that the nanowires display about 161% volume expansion after the first sodiation and then cycle with an 83% reversible volume expansion. Despite their massive expansion, the nanowires can be cycled without any cracking or facture during the ultrafast sodiation/desodiation process. In addition, most of the phases involved in the sodiation/desodiation process possess high electrical conductivity. More specifically, the NaZnSb exhibits a layered structure, which provides channels for fast Na+ diffusion. This observation indicates that ZnSb intermetallic nanomaterials offer great promise as high rate and good cycling stability anodic materials for the next generation of sodiumion batteries.

published proceedings

  • ADVANCED FUNCTIONAL MATERIALS

author list (cited authors)

  • Nie, A., Gan, L., Cheng, Y., Tao, X., Yuan, Y., Sharifi-Asl, S., ... Shahbazian-Yassar, R.

citation count

  • 84

complete list of authors

  • Nie, Anmin||Gan, Li-yong||Cheng, Yingchun||Tao, Xinyong||Yuan, Yifei||Sharifi-Asl, Soroosh||He, Kun||Asayesh-Ardakani, Hasti||Vasiraju, Venkata||Lu, Jun||Mashayek, Farzad||Klie, Robert||Vaddiraju, Sreeram||Schwingenschloegl, Udo||Shahbazian-Yassar, Reza

publication date

  • January 2016

publisher