Comparison of rinsing and sanitizing procedures for reducing bacterial pathogens on fresh cantaloupes and bell peppers.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Increased consumption of fruits and vegetables is linked to health benefits but also to an increase in the number of outbreaks of foodborne illness. To determine the effectiveness of different sanitizing treatments for reducing bacterial pathogens on fresh produce, fresh cantaloupes and bell peppers were harvested and inoculated with suspensions of Salmonella Typhimurium and Escherichia coli O157:H7. The inoculated fruits were treated with water wash alone or were washed and then waxed or rinsed with 200 mg/liter hypochlorite, 10% Ca(OH)2, or 2% lactic acid solutions applied by dipping for 15 s or spraying for 15 s. Preliminary experiments with chlorine treatments indicated that spraying with a 200, 600, or 1,000 mg/liter hypochlorite solution reduced populations of both pathogens by 2.1 to 2.6 and 1.5 to 2.1 log CFU for Salmonella Typhimurium and E. coli O157:H7, respectively. In general, no differences were observed between chlorine solutions without pH adjustment (pH 9.2) and those with pH adjusted to 6.0. When different wash regimes were applied to inoculated cantaloupes or bell peppers, water wash alone produced significantly lower counts of both pathogens on bell peppers in comparison to untreated controls. However, this reduction was not observed on cantaloupes, indicating a possible surface effect. Application of 2% L-lactic acid by spray was the treatment that resulted in the lowest bacterial counts on both cantaloupes and bell peppers. This treatment did not produce any deleterious change in the sensorial characteristics of the products tested. None of the pathogens studied was able to grow during refrigerated storage (5 degrees C for cantaloupes and 10 degrees C for bell peppers), although numbers close to the detection limit of the counting method were found in randomly tested individual samples at days 14 and 28 of storage, indicating that these pathogens can survive for long periods on the produce surface. These results indicate that selected produce commodities could be sanitized at the packing facility. However, these interventions should not be applied as a replacement for but only as a complement to good hygiene practices.