The effects of sequence difficulty and practice on proportional and nonproportional transfer Academic Article uri icon

abstract

  • Two experiments were designed to determine participants' ability to transfer a learned movement sequence to new spatial locations. A 16-element dynamic arm movement sequence was used in both experiments. The task required participants to move a horizontal lever to sequentially projected targets. Experiment 1 included two groups. One group practised a relatively easy 16-element movement sequence (easy long). The other group practised a more difficult 16-element movement sequence (difficult long). Approximately 24 hours after practice with their respective sequence both groups were administered a retention and two transfer tests. The only difference between the retention and transfer tests was the location of the targets. The short transfer target configuration was considered a proportional transfer because all the amplitudes between targets were reduced by the same proportion. The mixed transfer configuration was considered a nonproportional transfer because the targets did not have the same proportional distances between targets as the sequence they practised. The results indicated that participants could effectively transfer the difficult long sequence to the new target configurations regardless of whether the transfer required proportional and nonproportional spatial changes to the movement pattern. However, the easy long sequence was only effectively transferred in the proportional transfer condition. Experiment 2 assessed the effects of extended practice of the easy long sequence on proportional and nonproportional spatial transfer. The data indicated that participants could again effectively transfer the easy long sequence to proportional but not the nonproportional spatial transfer conditions regardless of the amount of practice (1 or 4 days). The results are discussed in terms of the mechanism by which response sequences become increasingly specific over extended practice in an attempt to optimize movement production and how this process interacts with the difficulty of the sequence.

author list (cited authors)

  • Braden, H. W., Panzer, S., & Shea, C. H.

citation count

  • 21

complete list of authors

  • Braden, Heather Wilde||Panzer, Stefan||Shea, Charles H

publication date

  • January 2008