Effect of Low Elastic Wave Radiation on Fluid Percolation Through Fractured Media Conference Paper uri icon

abstract

  • During past few years, models for predicting the flow behavior under radiation of elastic waves have been presented for non-fractured porous. However, little attention has been paid to mathematical modeling of this phenomenon in fractured media. In this work, the model presented by Pavel et.al is extended to fractured systems. Firstly, flow behavior of Bingham plastic crude oil is investigated in the fracture and secondly, acoustic waves role on capillary trapping is demonstrated. The results of mathematical model clarified that radiation of wave with low frequency and low intensity increases the flow rate and decreases the minimum pressure gradient required for flow of Bingham plastic fluids in fractured media. Besides, it is inferred that lower the saturation of oil in a two phase system in fracture, lower will the wave radiation be effectual. Further, it is shown that the effect of elastic wave is of less significance in higher pressure gradients. So it is revealed that low frequency wave technology would not be applicable in high pressure fractured reservoirs. The results of modeling presented in this work can be a path breaking to future studies in the field of fractured reservoirs acoustic stimulation.

name of conference

  • 73rd EAGE Conference and Exhibition incorporating SPE EUROPEC 2011

published proceedings

  • Conference Proceedings

author list (cited authors)

  • Najafi, I., Keshavarzi, B., Karimi, R., H. Ghazanfari, M., & Amani, M.

citation count

  • 0

complete list of authors

  • Najafi, I||Keshavarzi, B||Karimi, R||H. Ghazanfari, M||Amani, M

publication date

  • May 2011