High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids Academic Article uri icon

abstract

  • Solar photovoltaic (PV) energy has witnessed double-digit growth in the past decade. The penetration of PV systems as distributed generators in low-voltage grids has also seen significant attention. In addition, the need for higher overall grid efficiency and reliability has boosted the interest in the microgrid concept. High-efficiency PV-based microgrids require maximum power point tracking (MPPT) controllers to maximize the harvested energy due to the nonlinearity in PV module characteristics. Perturb and observe (P&O) techniques, although thoroughly investigated in previous research, still suffer from several disadvantages, such as sustained oscillation around the MPP, fast tracking versus oscillation tradeoffs, and user predefined constants. In this paper, a modified P&O MPPT technique, applicable for PV systems, is presented. The proposed technique achieves: first, adaptive tracking; second, no steady-state oscillations around the MPP; and lastly, no need for predefined system-dependent constants, hence provides a generic design core. A design example is presented by experimental implementation of the proposed technique. Practical results for the implemented setup at different irradiance levels are illustrated to validate the proposed technique. © 2011 IEEE.

altmetric score

  • 6

author list (cited authors)

  • Abdelsalam, A. K., Massoud, A. M., Ahmed, S., & Enjeti, P. N.

citation count

  • 541

publication date

  • April 2011