Dopaminergic Neurotoxicants Cause Biphasic Inhibition of Purinergic Calcium Signaling in Astrocytes Academic Article uri icon

abstract

  • Dopaminergic nuclei in the basal ganglia are highly sensitive to damage from oxidative stress, inflammation, and environmental neurotoxins. Disruption of adenosine triphosphate (ATP)-dependent calcium (Ca2+) transients in astrocytes may represent an important target of such stressors that contributes to neuronal injury by disrupting critical Ca2+-dependent trophic functions. We therefore postulated that plasma membrane cation channels might be a common site of inhibition by structurally distinct cationic neurotoxicants that could modulate ATP-induced Ca2+ signals in astrocytes. To test this, we examined the capacity of two dopaminergic neurotoxicants to alter ATP-dependent Ca2+ waves and transients in primary murine striatal astrocytes: MPP+, the active metabolite of 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and 6-hydroxydopamine (6-OHDA). Both compounds acutely decreased ATP-induced Ca2+ transients and waves in astrocytes and blocked OAG-induced Ca2+ influx at micromolar concentrations, suggesting the transient receptor potential channel, TRPC3, as an acute target. MPP+ inhibited 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced Ca2+ transients similarly to the TRPC3 antagonist, pyrazole-3, whereas 6-OHDA only partly suppressed OAG-induced transients. RNAi directed against TRPC3 inhibited the ATP-induced transient as well as entry of extracellular Ca2+, which was augmented by MPP+. Whole-cell patch clamp experiments in primary astrocytes and TRPC3-overexpressing cells demonstrated that acute application of MPP+ completely blocked OAG-induced TRPC3 currents, whereas 6-OHDA only partially inhibited OAG currents. These findings indicate that MPP+ and 6-OHDA inhibit ATP-induced Ca2+ signals in astrocytes in part by interfering with purinergic receptor mediated activation of TRPC3, suggesting a novel pathway in glia that could contribute to neurotoxic injury.

altmetric score

  • 0.5

author list (cited authors)

  • Streifel, K. M., Gonzales, A. L., De Miranda, B., Mouneimne, R., Earley, S., & Tjalkens, R.

citation count

  • 7

publication date

  • November 2014