Amblyomma americanum (L.) (Acari: Ixodidae) tick salivary gland serine protease inhibitor (serpin) 6 is secreted into tick saliva during tick feeding.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
In order to successfully feed and transmit disease agents, ticks are thought to inject serine protease inhibitors (serpins) into the host to modulate host defense responses to tick feeding, such as inflammation, the complement activation pathway and blood coagulation. In this study, we show that Amblyomma americanum (Aam) serpin (S) 6 is putatively injected into the host during tick feeding, in that the antibody to recombinant (r) AamS6 specifically reacted with the expected 43/45 kDa AamS6 protein band on western blots of pilocarpine-induced tick saliva. Additionally, antibodies to tick saliva proteins that were generated by repeated 48 h infestations of rabbits with adult A. americanum specifically reacted with rAamS6. We speculate that AamS6 is associated with regulating events at the start of the tick feeding process, as temporal and spatial RT-PCR and western blot analyses revealed that both AamS6 mRNA and protein are strongly expressed during the first 24-72 h of feeding time before starting to fade from 96 h. The AamS6 protein has an apparently slow turnover rate in that, although the injection of AamS6 dsRNA into unfed ticks triggered complete disruption of the AamS6 mRNA by the 48 h feeding time point, western blot analysis of protein extracts of the same animals showed that the AamS6 protein that may have been expressed prior to disruption of the AamS6 mRNA was not depleted. We speculate that the presence of the AamS6 protein in ticks despite the complete disruption of the AamS6 mRNA explains the observation that RNAi-mediated silencing of the AamS6 mRNA did not affect the ability of A. americanum ticks to attach onto host skin, successfully feed and lay eggs. These findings are discussed in regards to advances in the molecular biology of ticks.