Segregation of genes transferred to one plant cell from two separate Agrobacterium strains.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Agrobacterium tumefaciens and Agrobacterium rhizogenes are soil bacteria which transfer DNA (T-DNA) to plant cells. Two Agrobacterium strains, each with a different T-DNA, can infect plants and give rise to transformed tissue which has markers from both T-DNAs. Although marker genes from both T-DNAs are in the tissue, definitive proof that the tissue is a cellular clone and that both T-DNAs are in a single cell is necessary to demonstrate cotransformation. We have transferred two distinguishable T-DNAs, carried on binary vectors in separate Agrobacterium rhizogenes strains, into tomato cells and have recovered hairy roots which received both T-DNAs. Continued expression of marker genes from each T-DNA in hairy roots propagated from individual root tips indicated that both T-DNAs were present in a single meristem. Also, we have transferred the two different T-DNAs, carried on identical binary vector plasmids in separate Agrobacterium tumefaciens strains, into tobacco cells and recovered plants which received both T-DNAs. Transformed plants with marker genes from each T-DNA were outcrossed to wild-type tobacco plants. Distribution of the markers in the F1 generation from three cotransformed plants of independent origin showed that both T-DNAs in the plants must have been present in the same cell and that the T-DNAs were genetically unlinked. Cotransformation of plant cells with T-DNAs from two bacterial strains and subsequent segregation of the transferred genes should be useful for altering the genetic content of higher plants.