Expression of a 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Camptotheca acuminata is differentially regulated by wounding and methyl jasmonate.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We have isolated a gene, hmg1, for 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) from Camptotheca acuminata, a Chinese tree that produces the anti-cancer monoterpenoid indole alkaloid camptothecin (CPT). HMGR supplies mevalonate for the synthesis of the terpenoid component of CPT as well as for the formation of many other primary and secondary metabolites. In Camptotheca, hmg1 transcripts were detected only in young seedlings and not in vegetative organs of older plants. Regulation of the hmg1 promoter was studied in transgenic tobacco using three translational fusions (-1678, -1107, -165) with the beta-glucuronidase (GUS) reporter gene. Histochemical analysis of plants containing each of the three promoter fusions showed similar developmental and spatial expression patterns. In vegetative tissues, GUS staining was localized to the epidermis of young leaves and stems, particularly in glandular trichomes. Roots showed intense staining in the cortical tissues in the elongation zone and light staining in the cortex of mature roots. hmg1::GUS expression was also observed in sepals, petals, pistils, and stamens of developing flowers, with darkest staining in the ovary wall, ovules, stigmas, and pollen. Leaf discs from plants containing each of the translational fusions showed a 15- to 20-fold wound induction of hmg1::GUS expression over 72 h; however, this increase in GUS activity was completely suppressed by treatment with methyl jasmonate. Taken together, these data show that a 165-bp fragment of Camptotheca hmg1 promoter is sufficient to confer developmental regulation as well as wound induction and methyl jasmonate suppression of GUS expression in transgenic tobacco.