Galectin-3 Binding Protein Secreted by Breast Cancer Cells Inhibits Monocyte-Derived Fibrocyte Differentiation Academic Article uri icon

abstract

  • To metastasize, tumor cells often need to migrate through a layer of collagen-containing scar tissue which encapsulates the tumor. A key component of scar tissue and fibrosing diseases is the monocyte-derived fibrocyte, a collagen-secreting profibrotic cell. To test the hypothesis that invasive tumor cells may block the formation of the fibrous sheath, we determined whether tumor cells secrete factors that inhibit monocyte-derived fibrocyte differentiation. We found that the human metastatic breast cancer cell line MDA-MB-231 secretes activity that inhibits human monocyte-derived fibrocyte differentiation, whereas less aggressive breast cancer cell lines secrete less of this activity. Purification indicated that Galectin-3 binding protein (LGALS3BP) is the active factor. Recombinant LGALS3BP inhibits monocyte-derived fibrocyte differentiation, and immunodepletion of LGALS3BP from MDA-MB 231 conditioned media removes the monocyte-derived fibrocyte differentiation-inhibiting activity. LGALS3BP inhibits the differentiation of monocyte-derived fibrocytes from wild-type mouse spleen cells, but not from SIGN-R1(-/-) mouse spleen cells, suggesting that CD209/SIGN-R1 is required for the LGALS3BP effect. Galectin-3 and galectin-1, binding partners of LGALS3BP, potentiate monocyte-derived fibrocyte differentiation. In breast cancer biopsies, increased levels of tumor cell-associated LGALS3BP were observed in regions of the tumor that were invading the surrounding stroma. These findings suggest LGALS3BP and galectin-3 as new targets to treat metastatic cancer and fibrosing diseases.

altmetric score

  • 3

author list (cited authors)

  • White, M., Roife, D., & Gomer, R. H.

citation count

  • 25

publication date

  • August 2015