Effects of High Frequency Droplet Train Impingement on Spreading-Splashing Transition, Film Hydrodynamics and Heat Transfer Academic Article uri icon

abstract

  • The objective of this study is to investigate the effects of droplet-induced crown propagation regimes (spreading and splashing) on liquid film hydrodynamics and heat transfer. In this work, the effects of high frequency droplet train impingement on spreading-splashing transition, liquid film hydrodynamics and surface heat transfer were investigated experimentally. HFE-7100 droplet train was generated using a piezo-electric droplet generator at a fixed flow rate of 165 mL/h. Optical and IR images were captured at stable droplet impingement conditions to visualize the thermal physical process. The droplet-induced crown propagation transition phenomena from spreading to splashing were observed by increasing the droplet Weber number. The liquid film hydrodynamics induced by droplet train impingement becomes more complex when the surface was heated. Bubbles and micro-scale fingering phenomena were observed outside the impact crater under low heat flux conditions. Dry-out was observed outside the impact craters under high heat flux conditions. IR images of the heater surface show that heat transfer was most effective within the droplet impact crater zone due to high fluid inertia including high radial momentum caused by high-frequency droplet impingement. Time-averaged heat transfer measurements indicate that the heat flux-surface temperature curves are linear at low surface temperature and before the onset of dry-out. However, a sharp increase in surface temperature can be observed when dry-out appears on the heater surface. Results also show that strong splashing (We = 850) is unfavorable for heat transfer at high heat flux conditions due to instabilities of the liquid film, which lead to the onset of dry-out. In summary, the results show that droplet Weber number is a significant factor in the spreading-splashing transition, liquid film hydrodynamics and heat transfer.

published proceedings

  • JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME

author list (cited authors)

  • Zhang, T., Alvarado, J., Muthusamy, J. P., Kanjirakat, A., & Sadr, R.

citation count

  • 11

complete list of authors

  • Zhang, Taolue||Alvarado, Jorge||Muthusamy, JP||Kanjirakat, Anoop||Sadr, Reza

publication date

  • February 2016