A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Regression calibration (RC) is a popular method for estimating regression coefficients when one or more continuous explanatory variables, X, are measured with an error. In this method, the mismeasured covariate, W, is substituted by the expectation E(X|W), based on the assumption that the error in the measurement of X is non-differential. Using simulations, we compare three versions of RC with two other 'substitution' methods, moment reconstruction (MR) and imputation (IM), neither of which rely on the non-differential error assumption. We investigate studies that have an internal calibration sub-study. For RC, we consider (i) the usual version of RC, (ii) RC applied only to the 'marker' information in the calibration study, and (iii) an 'efficient' version (ERC) in which the estimators (i) and (ii) are combined. Our results show that ERC is preferable when there is non-differential measurement error. Under this condition, there are cases where ERC is less efficient than MR or IM, but they rarely occur in epidemiology. We show that the efficiency gain of usual RC and ERC over the other methods can sometimes be dramatic. The usual version of RC carries similar efficiency gains to ERC over MR and IM, but becomes unstable as measurement error becomes large, leading to bias and poor precision. When differential measurement error does pertain, then MR and IM have considerably less bias than RC, but can have much larger variance. We demonstrate our findings with an analysis of dietary fat intake and mortality in a large cohort study.