TIME EVOLUTION OF OVERSTRESS PROFILES NEAR BROKEN FIBERS IN A COMPOSITE WITH A VISCOELASTIC MATRIX Academic Article uri icon

abstract

  • The shear-lag model is applied to a monolayer, unidirectional, fiber-reinforced composite loaded in tension. The monolayer contains an infinite number of parallel fibers, with an arbitrary number of them broken simultaneously. While the fibers are modeled as linear elastic, a linear viscoelastic constitutive law is assumed for the matrix material. The time evolution of the overstress profiles in the fibers and matrix near breaks is determined and the time dependence of the effective load transfer length is calculated. Exact closed-form solutions as well as approximate evaluations of the above quantities are given for a power-law creep compliance model, suitable for most epoxy thermosetting resins as matrix materials. These results are also extended to the case of sequential breaks in time and the ease of an idealized indentation test. 1989.

published proceedings

  • INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES

author list (cited authors)

  • LAGOUDAS, D. C., HUI, C. Y., & PHOENIX, S. L.

citation count

  • 79

complete list of authors

  • LAGOUDAS, DC||HUI, CY||PHOENIX, SL

publication date

  • January 1989