The effect of temperature and extrusion speed on the consolidation of zirconium-based metallic glass powder using equal-channel angular extrusion
Academic Article
Overview
Identity
Additional Document Info
Other
View All
Overview
abstract
In this study, gas-atomized amorphous Zr58.5Nb 2.8Cu15.6Ni12.8Al10.3 (Vitreloy 106a) containing 1280 ppmw oxygen was consolidated by equal-channel angular extrusion (ECAE). The powder was vacuum encapsulated in copper cans and subjected to one extrusion pass in the temperature region above the glass transition temperature (Tg) and below the crystallization temperature (Tx). The effects of extrusion temperature and the extrusion rate on microstructure, thermal stability, hardness, and compressive strength are investigated. Compression fracture surfaces were examined to determine the deformation mechanisms. The consolidates in which the time-temperature-transformation (TTT) boundary was not crossed during processing exhibit differential scanning calorimetry (DSC) patterns similar to the initial powder, with a slight decrease in Tx. Compressive strengths of about 1.6 GPa are recorded in the consolidates processed at 30C and 40C below Tx, which is close to what is observed in cast counterparts. The fracture surfaces exhibit vein patterns covering up to 90 pct of the surface area in some samples, which are characteristic of glassy material fracture. The slight decrease in Tx after consolidation is attributed to thermal-history-dependent short-range order and formation of nanocrystalline islands. The present results show that ECAE is successful in consolidation of metallic glass powder. This processing avenue opens a new opportunity to fabricate bulk metallic glasses (BMGs) with dimensions that may be impossible to achieve by casting methods.