Hydrogen-bonded polymer complexes and nanocages of weak polyacids templated by a Pluronic block copolymer.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We investigate the phase behavior, morphology, and temperature response of hydrogen-bonded assemblies formed by a triblock copolymer Pluronic F127 (F127) and polycarboxylic acids of varied hydrophobicity and chain lengths. As confirmed by FTIR, the complexes of poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) with F127 at acidic pH were stabilized by multiple hydrogen bonding between carboxylic acid groups of polyacids and ether groups of F127. The colloidal stability of the polyacid/F127 complexes (their occurrence as stable dispersions, slowly coagulating dispersions or precipitates) was dependent on the composition of complexes, polyacid molecular weight and hydrophobicity, as well as temperature. For both polyacids, complexes could not be solubilized in excess of polyacids, but excess of F127 resulted in the formation of colloidally stable nanostructured clusters whose size could be controlled from tens to hundreds of nanometers by the polyacid-to-F127 ratio, temperature, and the polyacid molecular weight. Hydrophobicity of polyacids had a dramatic effect on the temperature response of Pluronic-enriched assemblies. While PMAA suppressed the LCST behavior of F127 due to binding within the temperature-responsive PPO core of F127, more hydrophilic PAA allowed F127 micellization and supported reversible, temperature-induced re-structuring of PAA-F127 clusters. At temperatures above the LCST of Pluronic, low-molecular-weight PAA formed nanosized dispersed complexes, in which the polyacid chains were wrapped around individual F127 micelles. Chemical crosslinking of PAA in the shells of these complexes followed by removal of the templating F127 cores resulted in easy-to-prepare monodisperse pH-responsive polymer nanocages with controllable size and swelling amplitude.